- Pdf College 2024
- Dr. Mostafa 2025
- Illustrated Summaryملخص بالرسم ، تقدر تراجع منه المعلومات المهمة
- Quiz 3 passive transportحل كويز د الصعيدي
- Quize
- summaryدا توضيح للنقاط المهمة في المحاضرة وايه اللى نفهمه و ايه اللى نحفظه
- VIP LECTUREدا توضيح للنقاط المهمة في المحاضرة وايه اللى نفهمه و ايه اللى نحفظه
- SummarizeSimple diffusion بشكل mind Map
- SummarizeFacilitated diffusion، ملخص للمحاضرة مطابق للمنهج 2026
📌 Introduction & Lecturer Notes
- Lecturer: Dr. Magdy Youssef, Head of Physiology, Al-Azhar (Damietta).
- Emphasized mutual respect + discipline = key to success.
- Encouraged active attendance & good behavior.
🖇 Transport Across Cell Membrane
- Two main types: Passive Transport & Active Transport.
🟣 Passive Transport (Diffusion)
- ❌ No ATP used.
- Movement down concentration gradient (High → Low).
- Includes:
- Simple Diffusion
- Facilitated Diffusion
- Osmosis
- Linear relation between rate & concentration.
🟠 Active Transport
- ✅ Requires ATP.
- Moves substances against gradient (Low → High).
- Needs a carrier protein.
- Features:
- Saturation (limited carriers).
- Limited transport rate → plateau in curve.
📌 Types of Active Transport
🟣 1. Primary Active Transport (PAT)
- Uses energy directly from ATP.
- Example: Na⁺/K⁺ Pump.
Pump Properties:
- 3 Na⁺ binding sites (inside).
- 2 K⁺ binding sites (outside).
- ATPase activity + ATP binding site.
Mechanism:
- Carrier binds 3 Na⁺ inside → activates ATPase.
- ATP → ADP + Pi (phosphorylation).
- Shape change → releases Na⁺ outside.
- Carrier now binds 2 K⁺ outside.
- K⁺ binding → dephosphorylation → shape returns.
- K⁺ released inside.
➡ Continuous cycle.
Functions:
- Maintain Na⁺ & K⁺ concentration gradients.
- Maintain Resting Membrane Potential (RMP) (~5% contribution).
- Maintain Cell Volume (prevents swelling & rupture).
Other PAT examples:
- Ca²⁺ Pump: in membrane, ER, mitochondria.
- H⁺ Pump: in intestine & kidney (DCT, CD).
🟠 2. Secondary Active Transport (SAT)
- Uses indirect energy from Na⁺ gradient (made by Na⁺/K⁺ pump).
- Na⁺ moves passively in, releasing energy to move another molecule against gradient.
Types:
- Cotransport (Symport): Both move same direction.
- Example: Na⁺ + Glucose / Na⁺ + Amino acids.
- Counter-transport (Antiport): Move opposite directions.
- Example:
- Na⁺ in / H⁺ out (renal tubules).
- Na⁺ in / Ca²⁺ out (cardiac muscle).
Uniporter: moves only one substance.
🖇 Vesicular (Bulk) Transport
1. Endocytosis (into cell):
- Phagocytosis: Cell eating.
- Pinocytosis: Cell drinking.
- Mechanism: membrane invaginates → vesicle → fuses with lysosome → digestion.
2. Exocytosis (out of cell):
- Vesicle → fuses with membrane → releases content (e.g., neurotransmitters like ACh).
📌 Osmosis & Tonicity
🟣 Osmosis
- Movement of water from dilute → concentrated solution.
- Needs:
- Semipermeable membrane.
- Impermeable solute.
- Continues until solute concentration equal.
Osmotic Pressure (Pₒₛₘ):
- Pressure required to stop osmosis.
- Depends on number of solute particles (not weight).
- Ionizing substances (NaCl → 2 particles) exert higher osmotic effect than non-ionizing (Glucose → 1 particle).
- Measured in Osmoles / mOsm.
Osmolality vs. Osmolarity:
- Osmolality: per kg of water.
- Osmolarity: per L of solution.
- Practically interchangeable.
🟠 Tonicity & Cell Volume
- Depends on non-penetrating solutes relative to plasma (~300 mOsm/L).
- Isotonic:
- Same osmolarity as plasma (e.g. 0.9% saline).
- No water movement → Cell volume constant.
- Hypotonic:
- Lower osmolarity (e.g. 200 mOsm/L).
- Water enters cell → Swelling → Hemolysis.
- Hypertonic:
- Higher osmolarity (e.g. 400 mOsm/L).
- Water leaves cell → Shrinkage (Crenation).
🚨 Clinical Importance
- Failure of Na⁺/K⁺ pump → Na⁺ accumulation → water influx → cell swelling/rupture.
- In cardiac muscle, Na⁺/Ca²⁺ exchange critical for relaxation.
- Isotonic IV fluids prevent osmotic injury to RBCs.